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ABSTRACT

“The feasibility of using a series of Wagner functions to represent
airfoil contours in design procedures has been investigated. It was
demonstrated that a large class of airfoils can be adequately described
by a relatively small number of terms. A least squares type of procedure
was used to determine the unknown coefficients in the series represen-
tation. The use of Wagner function representation in thin symmetrical
airfoil design was investigated. Both the direct method of analysis
in which the velocity distribution is calculated for a known shape and
the inverse method of design in which the airfoil shape corresponding
to a specified velocity distribution is determined were considered.
Standard airfoil data was used to test the suitability of the Wagner
function representation, and the results were found to be satisfactory.
Rapid calculations were possible even in the inverse mode since the
use of Wagner functions allowed the determination of all the improper
integrals that appear in thin airfoil theory in closed form.
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Section I

INTRODUCTION

There are two types of numerical procedures available for the design
of airfoils. In one technique, called the direct method, the flow about
a prescribed airfoil is analyzed; and then, based upon this result, the
airfoil shape is modified in an attempt to satisfy the design conditior ..
The other design formulation is the inverse method in which the airfoil
surface pressures or velocities are specified, and the airfoil shape is
subsequently determined. The design is usually optimized subject to
. specified aerodynamic and structural constraints.

There have been many recent attempts to computerize airfoil design
procedure. Barger and Brooks [1] used a streamline curvature method to
design airfoils. This method is based on the Theodoreson Transformation,
which requires complicated conformal mappings for the representation of
the airfoil geometry. After the airfoil is tailored to obtain the desired
pressure distribution, the contour has to be adjusted to satisfy the proper
trailing edge conditions. TSFOIL code [2] has recently been developed for
the analysis and design of two-dimensional transonic airfoils. It is
capable of computing both free-air flows and flows under various wind-
tunnel wall conditions. The implementation of TSFOIL requires the specifi-
cation of the airfoil geometry, preferably in a suitable functional form.
Other design methods of note are the inverse methods of Beatty and
Narromore [3] and Carlson [4]. Most of these codes are based on the

inviscid theory. The usual approach for taking viscous effects into account




is to treat the airfoil determined by the inviscid design method as the
displacement surface and to subtract from it the displacement thickness
determined by a boundary layer computation. The latest version of the
Carlson's code [5], for example, accounts for the viscous effects in this
manner.

An important advantage to the computational method is that it allows
the use of numerical optimization techniques for automated airfoil design.
Vanderplaats, Hicks and Murman [6] have investigated one such method which
uses direct optimization for twc dimensional flow. They have developed a
numerical optimization design code by linking an optimization program
based on the method of feasible directions with an aerodynamic analysis
program that uses a relaxation method to solve the partial differential
equations governing inviscid, small disturbance flow. Hicks and Szelazek
[7] have recently developed a similar technique for design of subsonic
airfoils using a minicomputer. The numerical optimization technique in-
volves the minimization of some specified parameter, such as the lift
coefficient, for a set of design parameters describing the airfoil geometry
and satisfying a number of specified constraints. A weak point of this
analysis is probably the use of a simple polynomial contour representation,
since it somewhat limits the class of obtainable solutions.

A second procedure being developed at the National Aerospace Laboratcry
in the Netherlands and described briefly by Sloof [8] is the so-called
constrained inverse method. In this procedure, a least squares technique
is used for the design problem in such a manner that an a priori specified
balance is obtained between the prescribed pressure distribution and the
geometric requirements. Labrujere [9] has applied this technique to the

two-dimensional incompressible flow problem.




The design procedures mentioned above are only a small sample of a
large number of such methods which have already been developed or are
currently under development. An important first step in these methods
is the specification of the airfoil geometry. Ideally, the functional
relationship chosen should be numerically well conditioned and be capable
of modeling a wide range of airfoil shapes while maintaining computational
efficiency. It seems worthwhile, therefore, to search for and test new
functions to represent airfoil geometry.

The functional relationship proposed here requires the expression of
the slope of the airfoils in terms of a Fourier series of the so-called
Wagner functions [10]. This proposed representation of the airfoil contour,
described in the next chapter, seems to meet the requirements stated above.
It will be demonstrated that it has the capability of generating a wide
class of airfoil shapes in terms of a small number of parameters. In
addition, the Wagner function representation will be used in an inverse
type of procedure using thin airfoil theory and the results will be compared

with available data for standard airfoil shapes.




Section 2

WAGNER FUNCTION REPRESENTATION OF AIRFOIL CONTOURS

In an airfoil design procedure, the contour of the airfoil is usually
represented in one of the two ways. One way is to represent the contour
by means of a polygonal-shaped figure. This type of representation is
suitable for computations by direct method using both finite difference
and finite element procedures because of the ease in applying the boundary
conditions. In an inverse procedure, however, this may lead to shapes
that correspond to the given pressure distributions but are unacceptable
from the structural viewpoint.

Another way of representing the airfoil contour is to express it in
terms of simple functions. The functions used most commonly are pclynomial
and trigonometric functions. The polynomial representation is, by far, the
most popular but has the drawback of requiring a large number of parameters.
It is unsuitable for the representation of some shapes and requires geo-
metrical constraints (for example, to obtain closure at the trailing edge).
Fourier Sine seriésAare also used in airfoil contour representation. Such
a representation allows the use of Glauert integrals in the classical thin
airfoil theory (see Section 3). The Fourier series representation suffers
from somewhat the same drawbacks as the polynomial representation.

It is obvious, therefore, that the computational efficiency of a
design procedure will be enhanced significantly, if the airfoil can be
represented adequately by a function in terms of a small number of parameters

and without requiring additional constraints.




The functional relationship proposed here requires the expression
of the slope of the airfoil in terms of a Fourier series of Wagner

functions. Let the contour of a symmetrical airfoil be the equation

y = f(x) (o £ x £ 1) where x is measured along the chord of the air-

foil and both coordinates are non-dimensionalized with respect to the
chord length c. The slope of the airfoil is then expressed as follows:
l( =
£ (=) = Z_ AW (8} - &, (2.1)
n=1
2
where 6 is related to x by the equation x = sin“ 6/2.

Wn(O) are the so-called Wagner functions given by

_ 2 cos[(n + 1)6] + cos no
wn(O) T sin® (2,20

The above equation for the slope can be easily integrated to give

the airfoil contour.

It is given by

A
L .2 ® 0 .
y = - & sin ?+r(e+sm9)+n

>

_g_[;in(n 4 1)6 , sin n0
m

1 l- n + 1 n

Note that the above expansion itself ensures closure a* the trailing edge.

1o~ 8

(2:8)

The suitability of equation (2.3) in representing airfoil contours
will be tested by fitting this expression to standard airfoil shapes. For
this purpose, the data for NACA u4-digit airfoil profiles [11] will be used.

In order to fit the equation (2.3) to this data, it is convenient to write
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it in the following discrete form:

= - IR * F 48 . YR b cxcca
Y. FO(Li)AO + Fl(Bi)Al + + Fn(Bi)An (2.4)
where
-’
2 61 6. + sinei
FO(Bi) 5 o B ek mma——
and
sin(n + 1)8i sin nb,
Fn(ei) i [ n+ 1 4 n ] A%
(n =1, 2, --). The problem is to find Bos B oeemes » A_ so that equation

(2.3) will best fit a given airfoil profile. The method of least squares
[12] will be used here for this purpose and a brief introduction to this

method is given in the next section.

Method of Least Squares

Let there be a set of n data points (Xi’ Yi) through which it is
desired to pass a certain curve. This curve is to represent the '"best
fit" in the least squares sense. Equation (2.4) is rewritten in the

following form:

- - J L 8 ot e N i * 0% 9.0
Y. = A, F_ « i) + A, F, (Hi) + 4 Aj rj (“i) (2.5)




« &% % %
= % N, = F , B F, ’ sents
where A, Ags Aj AJ Lo F, 0 F) F] 4 s and ?1 represent
the calculated value of the ordinate by the Wagner function representation
for the ith point. If the actual ordinate of this point is Yi’ then

the error of fit at the ith point can be defined as

E. =Y. - Y. (2.6)

The sum of the squares of errors at all of the data points is

called the total error of fit and is given by

The errors have been squared to eliminate possible cancellation. The
total error is a function of how well the curve "fits" the data points;
i. e., it is a function of parameters KZ which control the positioning
of the curve in the X-Y plane. It should be fairly evident that the
"best" fit is that position which minimizes the total error. To find
this position, let S be a function of Ai "s and require that its

derivatives vanish. This leads to the following equations

o - n -

i“ =—)——:- Z(Yi'Y-)2=0,J‘=l,2 -------- n (2.8)
9A Z)A_ 1=1 1

J ]

or,
3 !
Y -Y)sw =0 (2.9)

i=1 1 1 BA

e



where

Equation (2.9) can then be

where

Fl(“l)

Fl(ﬁz)

Fl(“m)

F?(el).

rz(eg)

written in the matrix form as

Fn(ﬂl)

P €8 )
n m

(F1® Y1 - [PIY [F1 [A] = o

and

(Y] =

Letting [FI* [F] = [c] and [FI' [Y] = [B].

be written as

= [F]

Equation (2.11) can then

(2.10)

(2.21)




{B] = [c] EA] (2.13)

Multiplying both sides of the above equation, by [C]—l, the described

coefficient matrix [A] for the best fit can be obtained as follows:
= .
EC3 “IB] = [A] (2.14)

Representation of Standard Airfoil Shapes

The use of the method of least squares will now be illustrated by
fitting the Wagner function representation to the NACA 0006 airfoil.
Table 1 gives the actual value of the ordinates (taken from Ref. [11])
of this airfoil for various chordwise locations. Truncated form of the
Wagner function representaticn (equation (2.4)) was used in fitting the
airfoil contour data. For n = 2, the least squares method gives the
values of the coefficients as AO = 0.071049, Al = 0.011098, and
A2 = 0.0051307. The calculated values for each chordwise position as
well as the percentage errors are also given in Table 1. It is noted
that at the leading and trailing edges the errors are fairly large. Con-
siderable improvement is obtained by considering a four-term expansion
(n = 3). The calculated values of the coefficients in the case are:

Ao

0.10148, Al = 0.019233, A2 = 0.0044033 and A3 = 0.008108. The
percentage errors in representing the contour of the airfoil at various
chordwise locations are shown in Table 1. This time the error at the
leading and trailing edges is less than 1.5%, and is considereably less

at other places. This accuracy is deemed to be sufficient for representing
the shape of the NACA 0006 airfoil. The graphical comparison of calculated

and actual shapes is shown in Figure 1.




Computations were also made for several other standard airfoil
shapes (NACA 0010 and 0018). The results for these computations are
presented in Tables 2 and 3 and Figures 2 and 3. It is clear from
these results that a variety of airfoil shapes can be represented by
a series of Wagner function in terms of a relatively small number of
parameters.

Wagner function series may also be used to represent the upper
and lower surface of an unsymmetrical airfoil. The results for NACA

2412 and 4412 airfoils are presented in Figure 4 and 5.

10




Section 3
USE OF WAGNER FUNCTIONS IN SYMMETRICAL AIRFOIL DESIGN

The problem of calculating the flow field and the aerodynamic
properties of any given arbitrary airfoil with no restrictions as to its
thickness, camber or angle of attack is complex in practice. The available
methods are not convenient for either a rapid estimation of the velocity
or pressure distribution over the airfoil or for designing an airfoil
profile that will have a prescribed surface distribution of velocity or
pressure. In order to demonstfate the use of the Wagner function repre-
sentation, it will be advantageous to have an approach that will in some
way simplify the mathematical conditions of the problem. Such an alterna-
tive approach is provided by the classical thin airfoil theory. In this
theory, the airfoil is assumed to be sufficiently thin and elongated so
that the assumption of small perturbation can be made. Even though such
an assumption is not valid near the leading edge of an airfoil, the
solution of the resulting simple problem is remarkably useful.

The details of the thin airfoil theory may be found in Reference
[13]. Both the governing equations and the boundary conditions are
linearized in this theory, thus allowing the use of superposition. The
problem of a thin airfoil at a non-zero angle of attack can then be
represented as the superposition of the problem for a symmetrical air-
foil at zero incidence and that for a cambered airfoil with zerc thickness
at a non-zero angle of attack. The solution of these two problems may be
accomplished by the method of superposition of singularities. The

application of the Wagner function representation to the symmetrical airfoil




12
design using thin airfoil theory is discussed below.

Thin Symmetrical Airfoil at Zero Incidence

The flow past a thin symmetrical airfoil at zero angle of attack
(see Figure 6) can be simulated by a continuous distribution of
sources and sinks, of strength ¢ = ¢(x) per unit length located along
the chord line of the airfoil. Here x is the distance along the chord
line measured from the leading edge. An element of length 6x has
associated with it a source of strength o * 8x on the x-axis.

In the context of the thin airfoil theory, the flow perturbations
are assumed to be small compared with the free stream velocity V. Also,
the thickness of the airfoil is considered to be small compared to the
chord length c. The flux across a line such as PQ is then approximately

V * 2y. However, all the fluid generated by the sources between O and N

must cross the line PQ, because the part POQ of the boundary of the airfoil

is a streamline. Thus

X
[ o(x) - dx = 2vy (3.1)
0

Differentiating with respect to x yields

o (x) = 2v - %i’— (3.2)

Thus the required source of distribution is simply determined by the

shape of the airfoil. Note that

[ ovoax = 2v - [y] X3¢ = 0 (3.3)

R N i
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so that

c
[ o(X) dx = 0 (3.4)
0

which confirms that the algebraic sum of the source and sink strengths

£ i - dy -

within the body is zero. Further, at places where e > o, i.e., at the

front of the airfoil, the source strength is positive. At the rear of

the airfoil, on the other hand, there are negative sources (sinks).

In this first order theory, the velocity perturbation at the
point P' in Figure 6 is approximately the same as the point N' on the
x-axis, and is denoted by up' in the x-direction. The component at P' due

to the source o(x) dx at N is then given by

B o0 () dx L2¥ £ Az dx
p om (x = x')Y  2m (x - ') {3.5)

The total perturbation velocity at P' is then

C

o !‘f f'(x) dx
p ™o (x - x') (3.6)
It is convenient to let x =% c (1 - cos 6). Then dx = % ¢ sing d6,
and (x - x') = %¢ (cos® - cosf), so that
m .
S f f' (6) - sinb d6
" (cosh =~ cos 6') 13.7)

b 0

.y
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The perturbation velocity up' can thus be calculated from equation
(3.7) if the slope of the airfoil is known as a function of #. If the
airfoil contour is described by the Wagner function representation

Lequation (2.3)], then

[ (:J e 1) COSbU
£'(6) = A 201 * cos6) il 4 g_) an Sosi (? + 1)8] + co ,.,~
0 sin 6 T & sinf (3.8)
n=1
The perturbation velocity is then given by
up' T i 2(1 + cosf)
sk ke Em e Ry - siné
v " g AO -2 sin6
P4 5 A cosp(n + 1)8] + cos nU] a0 (3.9)
T e cosf - cosB' J
n=1
for which
u ' it 5 2(1 + cos 6)/ m - sin6
SR Bt = : de
\% i o cosfh - cosb
o 2 mcos[(n + 1)6] + cos nd
+) A~ ds
n ' -
n=l T 0 cosf - cosH (3.10)

Except for the second term, all of the integrals appearing on the right

hand side can be determined by means of the following Glauert integrals [ 13]

"
/ £ = 0 (3.11a)
0

cosf) - cosH'

I" cos nb do = 5 . 5in 08’
o ©osb - cosf' b sin 6 (3.11b)

by S
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The integral in the second term can be written as

1
m sinf® - sin®
~ de (3.12)
0 cosf - cos6

Since the contribution due to the sinf term is zero because of equation
(3.11a), the integral (3.12) can easily be evaluated as follows:

' ' ’
m sin6® - sin® m 0+6 &)

—de = - f cot ( —)d® =21n tan — (3.13)
0 cosfH - cosf 0 2 2

The equation (3.10) then becomes

15 2 2 6
= AO —+ —1In tan — | +
\ m m 2
1 L}
® 7 sin (n+l1)6 + sin nod
i A :
n=l m sin6 (3.14)

The above equation can be rewritten in the form

up' 1 1 1 ' 1 1 ( \
- AOFO(G ) + AlFl(e ) + ———— ¢ AnFn(e ) (3.1
where
L 4
i 2 2 0
F.=—+4+ — 1In tan —
0 i i1

&




and

1 1
sin (n+l1)6 + sin né6

! 2
n

n (3

sin 8

If the values of the Wagner coefficients (A's) are known for a given
airfoil, then the perturbation velocity corresponding to a given '
can be determined easily from equation (3.15).

For NACA 0006 airfoil, the coefficients A's were calculated in
Chapter 2 by using the known contour of the airfoil. The perturbation
velocities can then be evaluated at various chordwise locations by using
equation (3.15). The reference data [11] as well as the calculated values
are given in Table 4 and Figure 7. The error in total velocity and
pressure is of the order of one percent for this 6% thick airfoil.
Similar calculations were also made for NACA 0010-64 and 0018 airfoil
and the results are given in Table 5 (Figure 8) and Table 6 (Figure 9),
respectively. There is a considerable amount of error at the leading
and trailing edges for the NACA 0018 airfoil. This is to be expected
since thin airfoil theory is being used for a moderately thick (18%)
airfoil.

Equation (3.15) can also be used in an inverse type of procedur

which is more useful from a design standpoint. The airfoil designer
often wants to determine the contour that will produce a desired velocity
or pressure distribution. He may want a particular type of distributi

for instance, so that the airfoil will have favorable boundary layer

characteristics (delayed separation, low drag, etc.).




The coefficients An in equation (3.15) are the same as those
appearing in the Wagner function representation of the airfoil profile
as given by equation (2.3). Once these coefficients are determined, the
shape of the airfoil that corresponds to a given velocity distribution
becomes known. Comparing equation (3.15) with equation (2.6), which was
used to determine the coefficients in Wagner series representation of
an airfoil by the least squares method, one may observe that the two
equations are essentially of the same form. The least squares method,
as described in Chapter 2, can also be used to determine the coefficients
An in equation (3.15) that correspond to a specified velocity distribution.
The inverse procedure described above was tested by using the
known velocity distributions for standard airfoil shapes to determine the
corresponding contours. The results for NACA 0006, 0010-64 and 0010-66
airfoils are presented in Tables 7, 8 and 9 (Figures 10, 11, and 12),
respectively. The calculations were performed for the case n = 3. The
errors at the trailing edge can be improved somewhat by using a larger

number of terms in the Wagner series representation.




Section 4
DESIGN OF NONSYMMETRICAL AIRFOILS

A symmetrical airfoil at zero angle of attack is incapable of
producing any lift or pitching moment. As indicated in Chapter 3, a
cambered airfoil can be represented as a mean camber line of zero
thickness with a symmetrical thickness distribution superimposed on it.
Within the context of the thin airfoil theory, the induced velocity at
any point of the cambered airfoil may be found by superimposing the
induced velocity at the point due to the camber line and that due to
the thickness distribution. Just as the summetrical airfoil was analyzed
using a distribution of sources, the induced velocity due to a camber
line may be calculated by replacing it by a vortex system.

A camber line can be represented by the same shape as that shown
in Figure 6 for a symmetrical airfoil. It is unsuitable, however, to
represent the camber line by a series of Wagner functions. It was
found that such a representation requires the evaluation of highly
singular integrals. Camber lines are best represented by means of
piecewise polynomials. Standard NACA camber line shapes, for example,
are built in this manner.

Allen [14] showed that the load distribution and the slope of
the camber line can be represented in terms of conjugate Fourier series.

If the slope of the camber line is represented as

— = z b  cos n6 (4.1)
n
n



the 1lift coefficient at zero angle of attack is given by

C =9 (2B. + B.) (4.2)

and the pitching-moment coefficient about the quarter-chord point is

Cm = E (82 - Bl) (4.3)
where
m dy
. 1 o
BO = - -TT'(I) -d—; d6 (4.y4)

and Bl and B? are the first two coefficients in the Fourier series of
Equation (4.1). Von Mises [15] has suggested a simple way of calculating
the coefficients Bn when the camber line is represented in terms of
polynomials.

It is apparent from Equations (4.1) and (4.2) that the 1lift and

pitching-moment coefficients are controlled by Bl and B A camber

o
line could therefore be designed by specifying Bl and B2 in accordance
with the desired values of CL,O and Cm. For a camber line so obtained,

a family of airfoils can be generated by specifying various thickness
distributions. As shown earlier, the velocity and pressure due to this
added symmetrical profile can be calculated expeditiously by representing
it in terms of Wagner functions.

The design procedure described above seems to be especially

suitable for implementation on a minicomputer. The method is, of course,

limited by the assumptions of the thin airfoil theory. These assumptions

are violated over the entire airfoil if it is sufficiently thick and




near the leading edge for any airfoil. Nevertheless, this procedure
can be used to determine a preliminary design to be refined, if
necessary, by more sophisticated methods. These methods consume

a large amount of computer time in the inverse mode and require a
large computer for their implementation. Considerable amount of
savings in computer time should be possible if the initial input is

close to the final design.
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Section 5

SUMMARY AND CONCLUSIONS

The purpose of the present research was to investigate the
feasibility of representing airfoil contours in terms of a series of
Wagner functions in airfoil procedures. It has been demonstrated
that a large class of airfoils can be adequately described by a
relatively small number of terms of Wagner series. A least squares type
of procedure was used to determine the unknown coefficients of these
terms.

For symmetrical airfoils, the Wagner series representation was
found to be especially useful when using the thin airfoil theory. It
is possible to determine the principal value of the improper integrals
that appear in this theory in closed form. Thus the long computer
time usually required to evaluate such integrals numerically can be
avoided. Both the direct method of analysis in which the velocity
distribution is calculated for a known shape and the inverse method of
design in which the airfoil shape corresponding to a specified velocity
distribution is determined are presented in Section 3. The Wagner
function representation of the airfoil allows fast calculations even
in the inverse mode since it is possible to evaluate all the improper
integrals in closed form. A method of designing nonsymmetrical airfoils
based on thin airfoil theory has been suggested in Section 4.

It is concluded that Wagner functions are suitable for represent-

ing symmetrical airfoil contours. They are not suited, however, for
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representation of camber lines since, at least in thin airfoil theory,
their use leads to the necessity of evaluating singular integrals.

In principle, Wagner functions can be used to represent the upper

and lower surfaces of nonsymmetrical airfoils, but their use in
methods involving thick airfoil theory needs investigation. The
Wagner function representation also seems suitable for design methods
having a boundary layer analysis capability. Finally, their use in

transonic airfoil design methods merits investigation.
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TABLE 2. REPRESENTATION OF NACA 0010 AIRFOIL
BY WAGNER FUNCTION SERIZS

X/C Y/C (REF) Y/C (CAL) 2 ERROK
0.05000 0.02962 0.03005 1.45172
0.07500 C.03500 0.03512 033029
0.10000 0.03902 0.03893 0.23834
0.15000 004455 0.04427 0.63300
0. 2C€000 0.04782 0.04758 050397
0.25000 C. 064952 0.04942 019992
0.3C000 0.05002 0.05009 013395
0.4C000 0.064837 0.04862 0.51892
0.5C000 C.04412 0.064430 0.41704
060000 0.03803 0.03799 011044
0.7C000 0.03053 0.030364 0.62234
0.3€000 C.02187 0.02177 0-46182
096000 0.01207 0.01219 096935

0.95000 0.00672 0.006€9 0.48661
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TABLE 3. REPRESENTATION OF NACA 0018 AIRFOIL
BY WAGNER FUNCTICN SERIZS

X/sC Y/C (REF) Y/C (CAL) % ERROR
0.05000 0.05332 0.05409 1.44595
0.07500 0.06300 0.06321 D.33492
0.10000 0.07024 0.07007 0.2463G
0.15000 0.08018 0.07968 0.62859
0.2(€000 0.08606 0.08563 0.49617
0.25000 C.08912 0.08895 019524
0. 3C0C0 €.09003 0.09014 Ce12551

, 0.40000 0.08705 0.08750 0.52154
0.5C000 0.07941 007974 0.41431
0.5C000 0.06845 0.06837 0.11103
0. 76000 0.05496 C.05661 0.63501
0.8C000 €.03935 0.03918 042694
0.9C€000 0.02172 0.02193 0.97145

0.95000 0.01210 0.01203 0.56198
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TABLE 7. CALCULATED SHAPE FOR NACA 0006
- Al RFOIL USING INVERSE METHOD

X/ C Y/C (REF) Y/C (CAL) 2 ERROR

9.05009 0.01777 0.01775 0.09567

3. 07500 0402100 €.02086 0.67615

0.1C000 0.02341 6.02320 0.E8851

0.15CC0 0.02673 0.02649 089413

0.2¢039 0.02869 0.02852 0.56117

0. 25CC0 €.02971 0.02966 0e17503

| 9.30090 0.03001 003006 0.17328
|

f 2.4C000 0. 02902 .029 14 Cok100€

| 0.5€000 0.02647 02643 C.15485

E 0.6€CCO C.02282 0.02243 1.71341

| 6e7C009 0.01832 0.01755 Lo18122

).8€C00 0.01312 0.01213 7.53811

L 030000 0.00724 C.0C624 12.37565

* 9.95CC0 0.00403 0.00329 18.28040




TABLE 8. CALCULATED SHAPE FOR NACA 0010-64
AIRFOIL USING INVERSE METHOD

X/C Y/C (REF) Y/C (CAL) X ERKOK
0. 05000 C.02722 0.02535 685525
0.07500 0.03178 0.02992 5.85274
0.1€000 0.03533 0.033S53 5.10048
0.15000 0.04056 0.03907 J.68363
0.20000 0.06 411 0.04313 222399
0.3C000 0.04856 0.04814 0.87315
0.4C000 0.05000 0.04969 0.61800
0.5C000 C.04856 0.064809 095964
0.60000 0.04433 0.04351 1.86104
0.70000 0.03733 0.03610 3.30565
0.8C000 0.02767 G.02611 5.63065
0.9C000 0.01556 0.01390 106426/

095000 0.00856 0.00712 16.81075



TABLE 9. CALCULATED SHAPE FOR NACA 0010-66
AIRFOIL USING INVERSE MITHOD

Xx/C Y/C (REF) Y/C (CAL) X ERROK
0.05000 0.02656 0.02599 2.14232
0.07500 0.03089 0.02941 478148
0.1C€0060 0.03400 0.03200 587941
0.15000 0.03856 0.03602 6.59492
0.2CC00 0.04178 0.03927 .99805
N.30000 0.06578 0.04459 2.61031
0.4C000 0.04822 0.0 4845 0.47905
0.5C€000 0.04956 0.05046 1.81396
0.6C000 0.05000 0.04997 0.0620C
0.70000 0.04889 0.04619 5.52455
0.80000 0.04300 0.03808 11.43023
0.9€000 0.02833 0.024 05 15.11119

0.95000 C.01656 0.01386 16.31039
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